2023-09-20
Introduction
Summary
keywords
TODO
HW $T(n) = T(n/2) +n$ use Substitution $T(n) = 8T(n/2) + nlogn$ Assignment document.
Exercise*
Next time
Recap
Recursion Tree Method, Substitution,
scrutinize the code
write the recursion formula
do the substitution.
How do you reduce the size of the input? ex. substraction, division, taking a root.
shortcut method for recurrence relation.
3. Decreasing Recurrance $T(n)=2*T(n-1)+1$
example. fibonacci, subset finding problem.
Substitution: $T(n) = 2T(n-1)+1$ $\quad\quad=T(n-2)+1$ $\quad\quad=2T(n-2)+21+1$ $\quad\quad=2T(n-3)+221+21+1$ $\quad...$ $\quad\quad=2T(n-k)+2^{k-1}+2^{k-2}+2^{k-3}+...+2^2+2+1$
Time complexity of $O(2^n)$.
Masters Theorem
where $a>0,;b>0,; f(n)= O(n^k); \text{where}; k>=0$
Case 1. $a==1;$
#todo : fill out examples.
Case 2. $a>1$
#todo : fill out examples.
Dividing Function
For dividing functions, it is important n should never be zero in base case.
base case should not be of input size 0 Because we cannot divide by 0..
1. Dividing Recurrence $T(n)=T(n/2)+1$
smallest valid input should be $n=1$.
How many 1's are added? $n=2^k$ $k=\log n$ So, Time complexity is $\Theta(\log n)$
Let's use substitution method this time. $T(n) =T(n/2)+1$ $\quad\quad=T(n/2^2)+1+1$ $\quad\quad=T(n/2^3)+1+1+1$ $\quad...$ $\quad\quad=T(n/2^k)+k$ $\quad\quad=1+\log n$
2. Dividing Recurrence $T(n) = 2T(n/2)+n$
#todo : check the picture taken and see the recursive tree method.
draw each steps
find each step's time complexity (A)
find the base condition, and find the layer depth. (B)
time complexity = $A * B$
#todo : write about substitution
time complexity is $\Theta(n\log n)$
Last updated