master's theorem
Case 1. if $ \log_b{a} >k$
$\Theta(n^ {\log_b a })$
Case 2. if $\log_b{a}==k$
T(n)={O(nklogp+1n)p>−1O(nkloglogn)p==−1O(nk)plessthan−1. Case 3. if $\log_b a $< $k$
T(n)={O(nklogpn)p>=0O(nk)plessthan0. hint : keep $f(n)$ as it is if $p>=0$
Special Recurrence $T(n) = T(\sqrt n )+f(n)$
minimal valid base case : n==2
T(n)={1n==2T(n)+1n>2. No master's theorem. Should use substitution
T(n)=T(n1/2)+1=T(n1/4)+1+1=T(n1/8)+1+1+1=T(n1/2k)+k Here, let's assume $n=2^m$
then, $T(2^{m/2^k})+k=T(2^1)+\log_2{m}$
Here, since $m=\log_2{n}$,
$O(\log \log_2 n )$